If the zeroes of the polynomial x^3-9x^2+18 are a-b a a+b find a and b
Answers
Answered by
0
Answer:
Given:
polynomial x³ -9x² + 18
and zeros, a-b,a,a+b,find a and b
To find:
The values of 'a' and 'b'.
Pre-requisite Knowledge:
sum of roots = α+β+γ = -b/a
sum and product of roots = c/a
where the polynomial is ax³ + bx² + cx + d = 0
Solving Question:
zeros, a-b,a,a+b,find a and b
⇒ (a-b)+(a+b)+a = -b/a
3a = -b/a
3a = -(-9)/1
3a = 9
a=9/3
a = 3
sum and product of roots = c/a
⇒ a(a+b) +(a+b)(a-b) + a(a-b)
a² +ba + a² -b² + a² -ab
3² +3b + 3² -b² + 3² - 3b
9 + 9 -b² +9 = c/a
27 - b² = c/a
27 -b² = 0/a
27 -b² = 0
b² = 27
⇒ b² = 3*9
b = 3√3
∴ The value of 'a' = 3 and 'b' = 3√3
Similar questions