Math, asked by ritika254164, 9 months ago

If the zeroes of the polynomial x2 + p x+ q are double in value to the zeroes of 2x2-5x -3, then Find the values of p and q.

Answers

Answered by Cynefin
44

Required Answer:

✏GiveN:

  • Zeroes of x² + px + q are double of the zeroes of 2x² - 5x - 3

✏To FinD:

  • Find the value of p and q....?

━━━━━━━━━━━━━━━━━━━━

How to solve...?

We have to know the relation between the zeroes of any polynomial and coefficients of its term. The relation is:

 \large{ \circ{ \boxed{ \rm{sum \: of \:zeroes = -   \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}}} \\  \\  \large{ \circ{ \boxed{ \rm{product \: of \: zeroes =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}}}

I know that many of us learn that, for any quadratic polynomial ax² + bx + c, Sum of zeroes = -b/a and product of series is c/a, the way is somewhat correct because the coefficients might change, and you can get confused.

✏ So, it's better to know the relation provided by me above!! Now we will solve this question, by using this relation.

━━━━━━━━━━━━━━━━━━━━

Solution:

Let \alpha and \beta be the zeroes of the polynomial 2x² - 5x - 3. Then, by relation,

 \large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =   - \frac{ (- 5)}{2}}} \\  \\   \large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =  \frac{5}{2}............(1)}} \\  \\  \large{ \underline{ \rm{ \red{and}}}} \\  \\  \large{ \rm{ \longrightarrow \:  \alpha  \beta  =  \frac{ - 3}{2}.............(2) }}

According to question,

Zeroes of polynomial x² + px + q will be 2\alpha and 2\beta. Then, according to relation,

 \large{ \rm{ \longrightarrow \: 2 \alpha  + 2 \beta  =  -  \frac{p }{1} }} \\  \\  \large{ \rm{ \longrightarrow \: 2( \alpha  +  \beta ) =  - p}} \\  \\  \large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =  \frac{ - p}{2} }}

From, equation (1), we can say that,

  \large{ \rm{ \longrightarrow \:   \frac{ - p}{2}  =  \frac{5}{2} }} \\  \\  \large{ \rm{ \longrightarrow \:  - p =  \frac{5 \times  \cancel{2}}{  \cancel{2} }}} \\  \\  \large{ \rm{ \longrightarrow \: p =    \boxed{ \red{ \rm{ - 5}}}}}   \\  \\  \large{ \underline{ \red{ \rm{and}}}} \\  \\  \large{ \rm{ \longrightarrow \:  2\alpha \times  2 \beta  =  \frac{q}{1} }} \\  \\  \large{ \rm{ \longrightarrow \:  \alpha  \beta  =  \frac{q}{4} }}

But from eq.(2), we can say that,

 \large{ \rm{ \longrightarrow \:  \frac{q}{4}  =  \frac{ - 3}{2} }} \\  \\  \large{ \rm{ \longrightarrow \: q =  \frac{ - 3 \times 4}{2} }} \\  \\  \large{ \rm{ \longrightarrow \: q =   \boxed{ \rm{ \red{- 6}}}}}

Hence the value of p = -5 and q = -6

 \large{ \therefore{ \underline{ \underline{ \green{ \rm{Hence \: solved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions