If the zeroes of the quadratic polynomial x2 + (a + 1) x + b are 2 and -3, then (a) a = -7, b = -1 (b) a = 5, b = -1 (c) a = 2, b = -6 (d) a – 0, b = -6
Answers
Answered by
13
Answer:
Step-by-step explanation:
✢ Given:-
The roots of Quadratic Equation x²+(a+1)x+b=0 are 2 and (-3).
✢ To Find:-
The Values of a and b.
✢ Solution:-
p(x)= x²+(a+1)x+b=0
★ when x=2,
⇒p(2)=(2)²+(a+1)(2)+b=0
⇒ 4+2a+2+b=0
⇒ 2a+b=(-6)--------------(1)
★ when x=(-3),
⇒ p(-3)=(-3)²+(a+1)(-3)+b=0
⇒ 9-3a-3+b=0
⇒3a-b=6------------------(2)
★ Adding Equation(1) and Equation(2):-
⇒2a+3a+b-b=(-6)+6
⇒ 5a=0
★ Now putting the value a=0 in Equation(2):-
⇒ 3(0)-b=6
⇒ 0-b=6
Similar questions