Math, asked by navyak397, 1 month ago

if the zeros of the polynomial f(x)=2x^3-15x^2+37x-30 are in A.P;find them​

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{The given equation is }f(x) = 2x^{3} - 15x^{2} + 37x - 30 = 0

       \text{It is also given that the roots of }f(x) \text{ are in A.P}

       \text{Let the roots of the equation be }(a-d),a,(a+d)

       \text{Applying the relationship between roots and coefficients}

       \text{Sum of roots} = \dfrac{-b}{a}

\implies a-d+a+a+d = \dfrac{-(-15)}{2}

\implies 3a = \dfrac{15}{2}

\implies a = \dfrac{5}{2}

       \text{Product of roots} = \dfrac{-d}{a}

\implies (a-d)(a)(a+d) = \dfrac{-(-30)}{2}

       \text{We know that }(y+z)(y-z) = y^{2} - z^{2}

\implies (a^{2} - d^{2})(a) = \dfrac{30}{2}

\implies (a^{2}-d^{2})(a) = 15

        \text{We know that }a = \dfrac52

\implies \{(\dfrac52)^{2} - d^{2}\}(\dfrac52) = 15

\implies \dfrac{25}{4} - d^{2} = 6

\implies -d^{2} = 6 - \dfrac{25}{4}

\implies -d^{2} = \dfrac{24-25}{4}

\implies d^{2} = \dfrac{1}{4}

\implies d = +\dfrac12,-\dfrac12

       \text{We can take either value of }d\text{ as we will get the same roots}

\implies\text{The roots are:}

       (a-d) = \dfrac52 - \dfrac12 = 2

       a = \dfrac52 = 2.5

       (a+d) = \dfrac52 + \dfrac12 = 3

\therefore \text{ }\text{ }\boxed{\text{The roots of }f(x) \text{ are }2,2.5,3}

Similar questions