Math, asked by rhherle, 2 months ago

If the zeros of the polynomial/x) =x*-3x-6x +8 are of the form a-b, a,a + b, find all the zeros.​

Answers

Answered by IIMissPrachiII
9

✤ᴄᴏʀʀᴇᴄᴛ Qᴜᴇꜱᴛɪᴏɴ :-

If the zeros of the polynomial p(x) =x³-3x²-6x +8 are of the form a-b, a,a + b, find all the zeros.

✤ɢɪᴠᴇɴ:-

p(x) =x³-3x²-6x +8

Let α = a - b

β = a

γ = a + b

✤ꜱᴏʟᴜᴛɪᴏɴ :-

p(x) =x³-3x²-6x +8

 \bf  \alpha +  \beta  +  \gamma =  \frac{ - (cofficient \: of \:  {x}^{2} )}{coefficient \: of \:  {x}^{3} }

 \bf \to a - b + a + a + b =  \frac{ - ( - 3)}{1}

 \bf \to a + a + a =  3

 \bf \to 3a = 3

 \bf \to a =  \frac{3}{3}

 \bf \to a = 1

 \bf \alpha \times  \beta  \times  \gamma =  \frac{ - (constant \: term)}{coefficient \: of \:  {x}^{3} }

 \bf \to (a - b) \times a \times (a + b) =  \frac{ - 8}{1}

 \bf \to (a - b)  \times (a + b) \times a=   - 8

 \bf \to ( {a}^{2}  -  {b}^{2} ) \times a =  - 8

 \bf \to  {a}^{3}  -  {b}^{2} a =  - 8

 \bf putting \: a = 1

 \bf \to  {1}^{3}  -  {b}^{2}  \times 1 =  - 8

 \bf \to 1 -  {b}^{2}  =  - 8

 \bf \to  { - b}^{2}  =  - 8 - 1

 \bf \to  { - b}^{2}  =  - 9

 \bf \to  {b}^{2}  = 9

 \bf \to b =  \sqrt{9}

 \bf \to b = 3

Therefore,

a = 1 and b = 3

  • α = a - b = 1 - 3 = -2
  • β = a = 1
  • γ = a + b = 1 + 3 = 4

Similar questions