Math, asked by andagundapraveen, 1 year ago

if theta 1=theta 2=60 degre then prove
a...)cos(theta 1-theta 2)=cos theta 1 cos theta 2+sin theta 1+sin theta 2

b...)tan(theta 1-theta 2) =tan theta1-tan theta2/1+tan theta1 tan theta 2

Answers

Answered by harendrachoubay
4

a) \cos(\theta_1-\theta_2)=\cos \theta_1 \cos \theta_2+\sin \theta_1+\sin \theta_2

b) \tan(\theta_1-\theta_2)=\dfrac{\tan \theta_1-\tan \theta_2}{1+\tan \theta_1\tan \theta_2}, proved.

Step-by-step explanation:

We have,

\theta_1=\theta_2= 60°

To prove that,

a) \cos(\theta_1-\theta_2)=\cos \theta_1 \cos \theta_2+\sin \theta_1+\sin \theta_2

b) \tan(\theta_1-\theta_2)=\dfrac{\tan \theta_1-\tan \theta_2}{1+\tan \theta_1\tan \theta_2}

a) L.H.S. = \cos(\theta_1-\theta_2)

= \cos(60-60)

= \cos 0

= 1

R.H.S. = \cos \theta_1 \cos \theta_2+\sin \theta_1\sin \theta_2

= \cos 60 \cos 60+\sin 60\sin 60

= \dfrac{1}{2}.\dfrac{1}{2} +\dfrac{\sqrt{3}}{2}. \dfrac{\sqrt{3}}{2}

= \dfrac{1}{4}+\dfrac{3}{4}

= \dfrac{1+3}{4}

= 1

L.H.S. = R.H.S. = 1, proved.

b) L.H.S. = \tan(\theta_1-\theta_2)

Put \theta_1=\theta_2= 60°, we get

= \tan(60-60)

= \tan 0

= 0

R.H.S. = \dfrac{\tan \theta_1-\tan \theta_2}{1+\tan \theta_1\tan \theta_2}

= \dfrac{\tan 60-\tan 60}{1+\tan 60\tan 60}

= \dfrac{\sqrt{3}-\sqrt{3}}{1+\sqrt{3}\sqrt{3}}

= \dfrac{0}{1+3}

= 0

L.H.S. = R.H.S. = 0, proved.

Similar questions