CBSE BOARD X, asked by danika1806, 10 months ago

if theta is equals to 30 degree verify that tan 2 theta is equals to 2 tan theta upon 1 minus tan square theta​

Answers

Answered by SHAANbrainly
4

Hey friend!

Here is your answer:

Question: if Θ is equals to 30° verify that tan 2Θ is equals to 2 tanΘ / 1 - tan²Θ.

LHS = tan 2Θ

      = tan 60°

      = √3

Now,

RHS = 2 tan Θ/ 1 - tan²Θ

       = 2 tan 30°/ 1 - tan²30°

       = (2 × 1/√3) / 1 - (1/√3)²

       = 2/[√3 × ( 1 - 1/3 )]

       = 2/[√3 × 2/3]

       = 3/√3

       = √3

∵ LHS = RHS,

hence verified

I hope you understand. And if you appreciate my answer, please respond with a thanks.

Answered by sonalisamal47
1

Answer:

Explanation:

LHS tan 2\alpha= tan 2(30°)

                   = tan 60°

                    =\sqrt{3}

RHS tan30\\^{2}\frac{2tan\alpha }{1-tan^{2}\alpha  } =2 tan 30°/1-tan 30 x tan30

                            = 2(\frac{1}{\sqrt{3} })/1-(\frac{1}{\sqrt{3} })(\frac{1}{\sqrt{3} })

                              = \sqrt{3}

                       HENCE PROVED

Similar questions