Math, asked by parminderkaur34, 1 year ago

 if theta + phi = alpha and tan theta=x tan phi, then prove that sin(theta-phi)=k-1/k+1 sin alpha




please answer this question its urgent :(​

Answers

Answered by MaheswariS
21

Answer:

\implies\:sin(\theta-\phi)=(\frac{k-1}{k+1})sin\alpha

Step-by-step explanation:

Formula used:

sin(A+B)=sinA\:cosB+cosA\:sinB

sin(A-B)=sinA\:cosB-cosA\:sinB

Given:

\theta+\phi=\alpha...........(1)

and

tan\theta=k\:tan\phi

\implies\:\frac{sin\theta}{cos\theta}=k\:\frac{sin\phi}{cos\phi}

sin\theta\:cos\phi=k\:cos\theta\:sin\phi

Now,

sin(\theta-\phi)

=k\:cos\theta\:sin\phi-cos\theta\:sin\phi

=(k-1)\:cos\theta\:sin\phi

=\frac{(k-1)}{2}[2\:cos\theta\:sin\phi]

=\frac{(k-1)}{2}[sin(\theta+\phi)-sin(\theta-\phi)]

=\frac{(k-1)}{2}[sin\alpha-sin(\theta-\phi)]

\implies\:sin(\theta-\phi)=\frac{(k-1)}{2}sin\alpha-\frac{(k-1)}{2}sin(\theta-\phi)

\implies\:sin(\theta-\phi)+\frac{(k-1)}{2}sin(\theta-\phi)=\frac{(k-1)}{2}sin\alpha

\implies\:sin(\theta-\phi)(\frac{2+(k-1)}{2})=\frac{(k-1)}{2}sin\alpha

\implies\:sin(\theta-\phi)(\frac{k+1}{2})=\frac{(k-1)}{2}sin\alpha

\implies\:sin(\theta-\phi)(k+1)=(k-1)sin\alpha

\implies\:sin(\theta-\phi)=(\frac{k-1}{k+1})sin\alpha


parminderkaur34: please answer my other questions also
Similar questions