.If they reduced their CO2 emissions by 1/3, how much would CO2 would they produce? How much CO2 would they save?(
Answers
Approximately 40% of global CO2 emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2)—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2 emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower). Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.
1. Introduction
Global emissions in 2010 approached 30 gigatons (Gt). Approximately 12 Gt (40%) are emitted from electricity generation sector through the combustion of fossil fuels like coal, oil, and natural gas to generate the heat needed to power steam-driven turbines. Burning these fuels results in the production of carbon dioxide ()—the primary heat-trapping, “greenhouse gas” responsible for global warming, in addition to other nitrogen and sulfur oxides responsible for various environmental impacts [1].
Over the past two centuries, mankind has increased the concentration of in the atmosphere from 280 to more than 380 parts per million by volume, and it is growing faster every day. As the concentration of has risen, so has the average temperature of the planet. Over the past century, the average surface temperature of Earth has increased by about 0.74°C. If we continue to emit carbon without control, temperatures are expected to rise by an additional 3.4°C by the end of this century. Climate change of that magnitude would likely have serious consequences for life on Earth. Sea level rise, droughts, floods, intense storms, forest fires, water scarcity, and cardiorespiratory diseases would be some results. Agricultural systems would be stressed—possibly declined in some parts of the world. There is also the risk that continued warming will push the planet past critical thresholds or “tipping points” —like the large-scale melting of polar ice, the collapse of the Amazon rainforest, or the warming and acidification of the oceans—that will make irreversible climate change. Despite mounting evidence of the dangers posed by climate change, efforts to limit carbon emissions remain insufficient, ineffective, and, in most countries, nonexistent. Given current trends and the best available scientific evidence, mankind probably needs to reduce total emissions by at least 80% by 2050. Yet each day emissions continue to grow [2].
Electricity sector is the major source of the total global emissions responsible for approximately 40% worldwide, followed by transportation, industry, and other sectors as shown in Figure 1 [3]. As a result, we will focus in this paper on how to decrease the quantities of emitted from electricity sector using what is called the Smart Electric Grid, and video chats. Now consider how our relationship to
Explanation:
Pls mark as brainliest