If three distinct numbers are chosen randomly from the first 100 natural number then find the probability that all three of them are divisible by 2 and 3
Answers
Answered by
10
no. div by 2 and 3 is div by 6.
we have 16 such no.s {6,12,18,.......,96}
c= C of nCr
we have 16 such no.s {6,12,18,.......,96}
c= C of nCr
Answered by
10
The probability that all three of them are divisible by 2 and 3 is .
Step-by-step explanation:
Solution:
So, the numbers divisible by 6 from 1 to 100 are 6,12,18,....96
96 = 6+(n-1) 6 {where 'n' is no.of terms }
n =
On solving, we get n=16
So, there are total 16 numbers out of which the 3 distinct numbers are to be chosen.
Total no. of favorable choices = = n(A)
Total no.of ways= =n(S)
P(divisible by 2 and 3)=
=
= .
Similar questions