Math, asked by skullcandy86841, 8 months ago

If tita=30 find cos3tita= 4 cos^3tita -3costita

Answers

Answered by prince5132
8

CORRECT QUESTION :-

★ If ∅ = 30° then show that cos3∅ = 4cos³∅ - 3cos∅.

GIVEN :-

  • ∅ = 30° .

TO SHOW :-

  • cos3∅ = 4cos³∅ - 3cos∅.

SOLUTION :-

→ cos3∅ = 4cos³∅ - 3cos∅.

→ cos (3 × 30°) = 4cos³ 30° - 3cos30°

★ As we know that, cos30° = 3/2.

→ cos90° = 4 (cos³30°) - 3 × √3/2

★ As we know that, cos90° = 0

→ 0 = 4(√3/2)³ - 3√3/2

→ 0 = 4(√27/8) - 3√3/2

→ 0 = 3√3/2 - 3√3/2

→ 0 = 0

L.H.S = R.H.S

Hence verified ✅

ADDITIONAL INFORMATION :-

→ sin0° = 0

→ cos0° = 1

→ tan0° = 0

→ cot0° = ∞

→ cosec0° = ∞

Answered by Anonymous
5

Solution :-

 :\implies \sf \cos3 \theta = 4  { \cos}^{3} \theta - 3 \cos\theta \\  \\ :\implies \sf\cos3(30) \degree = 4  { \cos}^{3}(30) \degree - 3 \cos(30)\degree \\  \\:\implies \sf \cos90 \degree = 4  {  \bigg(\frac{ \sqrt{3} }{2} \bigg) }^{3} - 3 \times  \frac{ \sqrt{3} }{2} \\  \\:\implies \sf 0 = 4 \times   \frac{ \sqrt{27} }{8}  -   \frac{ 3\sqrt{3} }{2} \\  \\:\implies \sf 0 =  \frac{3 \sqrt{3} }{2} - \frac{3 \sqrt{3} }{2} \\  \\ :\implies \sf0 = 0

LHS = RHS

Hence Proved

Similar questions