if TN is the nth term of an AP then the value of tn+1 - tn-1
Answers
Answered by
3
Answer:
Step-by-step explanation:
we know the formula of nth term tₙ=a+(n-1)d,where a is the first term,d is the common difference and n is the number of terms
so similarly,we can write tₙ₋₁ =a+((n-1)-1)d = a+(n-2)d
also tₙ₊₁=a+((n+1)-1)d = a+nd
so tₙ₊₁ - tₙ₋₁ = (a+nd) - (a+(n-2)d) = (a+nd) - (a+nd-2d)
= a+nd-a-nd+2d= 2d
so the answer is 2d where we can write d= tₙ₊₁ - tₙ or = tₙ - tₙ₋₁ ,as d is the difference of two consecutive terms
so answer= 2d = 2(tₙ₊₁ - tₙ) or 2( tₙ - tₙ₋₁)
Hope this helps you
pls mark as brainliest
thanks :)
Similar questions