Math, asked by Drax5992, 11 months ago

If Tn=sinnθ+cosnθ prove that T3-T5/T1=T5-T7/T3

Answers

Answered by ashishks1912
4

The given equation \frac{T_3-T_5}{T_1}=\frac{T_5-T_7}{T_3} is proved

Step-by-step explanation:

Given that T_n=sin^n\theta+cos^n\theta

To prove that \frac{T_3-T_5}{T_1}=\frac{T_5-T_7}{T_3} :

That is to prove that LHS=RHS

  • From the given T_n=sin^n\theta+cos^n\theta
  • We want T_1,T_3,T_5and T_7 values

Put n=1 in T_n=sin^n\theta+cos^n\theta we get

  • T_1=sin^1\theta+cos^1\theta
  • T_1=sin\theta+cos\theta

Put n=3 in T_n=sin^n\theta+cos^n\theta we get

  • T_3=sin^3\theta+cos^3\theta

Put n=5 in T_n=sin^n\theta+cos^n\theta we get

  • T_5=sin^5\theta+cos^5\theta

Put n=7 in T_n=sin^n\theta+cos^n\theta we get

  • T_7=sin^7\theta+cos^7\theta

Taking LHS

\frac{T_3-T_5}{T_1}

  • Now substitute the values we get
  • \frac{T_3-T_5}{T_1}=\frac{sin^3\theta+cos^3\theta-(sin^5\theta+cos^5\theta)}{sin\theta+cos\theta}
  • \frac{T_3-T_5}{T_1}=\frac{sin^3\theta+cos^3\theta-sin^5\theta-cos^5\theta}{sin\theta+cos\theta}
  • \frac{T_3-T_5}{T_1}=\frac{sin^3\theta-sin^5\theta+cos^3\theta-cos^5\theta}{sin\theta+cos\theta}
  • =\frac{sin^3\theta(1-sin^2\theta)+cos^3\theta(1-cos^2\theta)}{sin\theta+cos\theta}
  • =\frac{sin^3\theta(cos^2\theta)+cos^3\theta(sin^2\theta)}{sin\theta+cos\theta} ( by using the identity sin^2x=1-cos^2x )
  • =\frac{sin^2\theta cos^2\theta(sin\theta+cos\theta)}{sin\theta+cos\theta}
  • =sin^2\theta cos^2\theta

Therefore \frac{T_3-T_5}{T_1}=sin^2\theta cos^2\theta\hfill (1)

Now taking RHS

\frac{T_5-T_7}{T_3}

  • Substituting the values we get
  • \frac{T_5-T_7}{T_3}
  • =\frac{sin^5\theta+cos^5\theta-(sin^7\theta+cos^7\theta)}{sin^3\theta+cos^3\theta}
  • =\frac{sin^5\theta+cos^5\theta-sin^7\theta-cos^7\theta}{sin^3\theta+cos^3\theta}
  • =\frac{sin^5\theta-sin^7\theta+cos^5\theta-cos^7\theta}{sin^3\theta+cos^3\theta}
  • =\frac{sin^5\theta(1-sin^2\theta)+cos^5\theta(1-cos^2\theta)}{sin^3\theta+cos^3\theta}
  • =\frac{sin^5\theta(cos^2\theta)+cos^5\theta(sin^2\theta)}{sin^3\theta+cos^3\theta} ( by using the identity sin^2x=1-cos^2x )
  • =\frac{sin^2\theta cos^2\theta(sin^3\theta+cos^3\theta)}{sin^3\theta+cos^3\theta}
  • =sin^2\theta cos^2\theta

Therefore \frac{T_5-T_7}{T_3}=sin^2\theta cos^2\theta\hfill (2)

  • Comparing the equations (1) and (2) we get
  • LHS=RHS

Therefore \frac{T_3-T_5}{T_1}=\frac{T_5-T_7}{T_3} is proved

Similar questions