Prove the following trigonometric identities:
tan3θ/1+tan²θ+cot3θ/1+cot²θ=secθcosecθ-2sinθcosθ
Answers
Answered by
0
Answer:
I cant understand full question please
Answered by
0
tan³θ /(1+tan²θ) + cot³θ / (1+cot²θ) = secθ. cosecθ - 2sinθ. cosθ proved
Step-by-step explanation:
To prove: tan³θ /(1+tan²θ) + cot³θ / (1+cot²θ) = secθ. cosecθ - 2sinθ. cosθ
Proof:
LHS tan³θ /(1+tan²θ) + cot³θ / (1+cot²θ) = [Sin³θ/Cos³θ / (1 + Cos²θ/Sin²θ)]
= [Sin³θ/Cos³θ / (Cos²θ + Sin²θ)/Cos²θ)] + [Cos³θ/Sin³θ/ (Cos²θ + Sin²θ)/Sin²θ)]
= Sin³θ/Cosθ + Cos³θ/Sinθ
= Sin^4θ + Cos^4θ / Cosθ.Sinθ
= [ 1- 2Sin²θCos²θ ] / Cosθ.Sinθ -----{from a²+b² = (a+b)² - 2ab}
= 1/Cosθ.Sinθ - 2.Sinθ.Cosθ
= Secθ.Cosecθ - 2.Sinθ.Cosθ
RHS = LHS
Hence proved.
Similar questions