Physics, asked by VishnuLuke248, 11 months ago

If two balls are projected at angle 45degrees and 60 degrees and maximum height reached are same , what is rationof initial velocities

Answers

Answered by Anonymous
2

Solution :

Let the balls A and B

Maximum height of ball A

 \sf h =   \frac{ {u}^{2}   {sin}^{2}   \theta}{2g}  \\  \\ \sf h =  \frac{ {u}^{2} { (\sin45 )}^{2}}{2g}  \\  \\\sf h =  \frac{ {u}^{2} }{2g}  \times   { \bigg( \frac{1}{2} \bigg) }^{2} \\  \\\sf h =   \frac{ {u}^{2} }{4g}  \\  \\\sf  {u}^{2}  = 4hg \\  \\ \boxed {\sf \blue{u =  \sqrt{4hg} }}

Maximum height of ball B

\sf h =  \frac{ {u}^{2} { (\sin 60)}^{2}  }{2g}  \\  \\\sf  h =  \frac{ {u}^{2}    }{2g}  \times  { \bigg( \frac{ \sqrt{3} }{2} \bigg)  }^{2}  \\  \\\sf h =  \frac{ {3u}^{2}  }{8g}  \\  \\  \sf {u}^{2}  =  \frac{8gh}{3}  \\  \\\boxed{\sf \green{ u = \sqrt{ \frac{8gh}{3}}} }

Ratio of the Initial velocity

  \sf \frac{ \sqrt{4gh} }{ \sqrt{ \frac{ 8gh }{3}} }  \\ \\ \sf   \frac{ \sqrt{4gh} \times\sqrt{ 3 }}{ \sqrt{8gh} } \\ \\  \sf \frac{ \sqrt{3} }{ \sqrt{2} }

\sf \orange{Ratio \: of \: initial \: velocity\: is\: \sqrt3 : \sqrt2}

Similar questions