Math, asked by Abid6057, 11 months ago

If two circles intersect at any two points prove that their centres lie on thr perpendicular

Answers

Answered by GalacticCluster
3

Correct Question :

if two circles intersects at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Answer :

Given -

  • AB is the common chord intersecting circles at A and B with centre O and O'.

\\

Proof -

 \\  \sf \: AO = AO' \\ \qquad  \quad \qquad \sf \bigg (radii \:  \: of \:  \: the \:  \: same \:  \: circle \bigg)  \\ \sf BO = BO' \\  \\  \sf \: OO' = OO' \qquad \quad \: (common) \\  \\  \\  \therefore \:   \: \triangle \sf \:  AOO' \cong \:  \triangle \:  \sf \: BOO' \qquad \: (sss) \\  \\  \\  \sf \angle \:  3 =  \:  \angle \: 4 \qquad \: (   \: by \:  \: cpct \: ) \:  -  -  - (1) \\  \\

Now, in AOP and BOP

 \\  \sf \: AO = OB \qquad \: (radii \:  \: of \:  \: the \:  \: same \:  \: circle \: ) \\  \\  \sf \: OP = OP \qquad \: ( \: common \: ) \\  \\  \sf \:  \angle \:  3 =  \:  \angle \: 4 \qquad \: ( \: from \: (1) \: ) \ \\

_______________________________________

 \\  \sf \triangle \:  \: AOP \:  \cong \:  \triangle \: BOP \qquad \: (sas) \\  \\  \therefore \sf \: AP = PB \\  \\  \sf \angle \: 1 =  \angle \: 2 \qquad \: (cpct) \\

Also,

 \\  \sf \angle \: 1 +  \angle \: 2 = 180 {}^{ \circ}  \\  \\  \\  \implies \sf \: 2 \:  \angle \: 1 = 180 {}^{ \circ}  \\  \\  \\  \implies \sf \:  \angle \: 1 = 90 {}^{ \circ}  \\

Similar questions