Math, asked by cha0n8guddTomkanba, 1 year ago

If two circles of radii 10cm and 8cm intersect each other and the length of the common chord is 12cm find the distance between their centers

Answers

Answered by dainvincible1
3
Circle O with radius 8;  circle P with radius 10 AB is chord of intersection and has length = 12 I is point on the chord where the radii of the two cirlcles  will meet
∴OB = 8, BI = 6, find OI by Pythagorean Theorem
       BI2  +  OI2  =  OB2                       36  +  OI2  =  64                  OI2   =  √ 28                  OI    =  5.292-------------------------------------------------------------- BP = 10,  BI = 6, find PI This is a 3 - 4- 5 right triangle: 6, PI = 8, 10-------------------------------------------------------------- Therefor the distance between the centers:    PO = OI + BI    PO = 5.292 + 8    PO = 13.292 
∴4 IS THE ANSWER
Similar questions