If two digit number is 4 times the sum of its digit and twice the product of the digits.find the number
Answers
Answer.
Let the digit in the ones place be x and tens place be y
Hence the two digit number = 10y + x
Given that the two digit number = 4 times sum of its digits
⇒ 10y + x = 4(x + y)
⇒ 10y + x = 4x + 4y
⇒ 3x – 6y = 0
⇒ 3x = 6y
∴ x = 2y → (1)
It is also given that the two digit number = 2 times product of its digits
⇒ 10y + x = 2xy
Divide by xy both the sides, we get
∴ y = 3
Hence x = 6
The two digit number is (10y + x) = 10(3) + 6 = 36
Answer:
Step-by-step explanation:
Solution :-
Let the ones place digit be x.
and tens place digit be y.
Number = 10y + x
According to the Question,
⇒ 10y + x = 4(x + y)
⇒ 10y + x = 4x + 4y
⇒ 3x − 6y = 0
⇒ x = 2y .... (i)
⇒ 10y + x = 2xy
Dividing both sides with xy, we get
⇒ 10/x + 1/y = 2
Putting the value of Eq (i), we get
⇒ 10/2y + 1/y = 2
⇒ 5/y + 1/y = 2
⇒ 6/y = 2
⇒ y = 6/2
⇒ y = 3
Putting y's value in Eq (i), we get
⇒ x = 2y
⇒ x = 2(3)
⇒ x = 6
Number = (10y + x) = 10(3) + 6 = 36