Math, asked by TayJoker9966, 1 month ago

If two exterior angles on the same side of a transversal intersecting two parallel lines are in ratio of 2:3. Then find the larger angle.

Answers

Answered by Anonymous
60

Given that, two exterior angles on the same side of a transversal intersecting two ∥ lines are in the ratio of 2: 3.

Need to find: The Larger angle?

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

❍ Let's Consider that, the two angles are 2x and 3x respectively.

⠀⠀⠀

\underline{\pmb{\bf{\dag\;}\frak{As\;we\;know\;that\;:}}}

⠀⠀⠀

  • Sum of exterior angles on the same side of a transversal intersecting two ∥ lines is equal to 180°.

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf{2x+3x=180\degree}\\\\\\:\implies\sf{5x=180\degree}\\\\\\:\implies\sf{x=\cancel\dfrac{180}{5}}\\\\\\:\implies\underline{\boxed{\frak{\pmb{\pink{x=36\degree}}}}}\;\bigstar

⠀⠀⠀

Hence,

  • First angle = 2x = 2(36) = 72°
  • Second angle = 3x = 3(36) = 108°

⠀⠀⠀

\therefore\;{\underline{\textsf{Hence,\;the\;measure\;of\;larger\;angle\;is\;{\textbf{108\degree}}.}}}⠀⠀⠀

Answered by Anonymous
269

Given : Two co interior angles on the same side of a transversal interacting two ||'s lines are in the ratio of 2:3.

To Find : Find the two angles ?

_________________________

Solution : Let the first angle be 2x and second angle be 3x.

~

\underline{\frak{As~we~know~that~ :}}

  • \boxed{\sf\pink{Some~side~of~transversal~is~180^\circ}}

~

\pmb{\sf{\underline{According ~to ~the ~Given ~Question~:}}}

~

\qquad{\sf:\implies{2x ~+ ~3x = ~180^\circ }}

\qquad{\sf:\implies{5x ~= ~180^\circ}}

\qquad{\sf:\implies{x ~= ~\cancel\dfrac{180^\circ}{5}}}

\qquad:\implies{\underline{\boxed{\frak{\pink{\pmb{x = 36^\circ}}}}}}

~

Therefore,

  • First angle, 2x = 2(36) => 72°
  • Second angle, 3x = 3(36) => 108°

~

Hence,

\therefore\underline{\sf{The\;angles\;are\; \bf{\underline{\pmb{72^\circ\;\&\;108^\circ}}}}}

~

________________________

V E R I F I C A T I O N :

\qquad{\rm\dashrightarrow{2x~+~3x~=~180^\circ}}

  • Put x = 36°

\qquad{\rm\dashrightarrow{2 × 36~+~3 × 36~=~180^\circ}}

\qquad{\rm\dashrightarrow{72^\circ~+~102^\circ~=~180^\circ}}

\qquad\dashrightarrow\large\pmb{\frak\red{180^\circ~=~180^\circ}}

Attachments:
Similar questions