Math, asked by RaviRock1525K, 9 months ago

If two numbers A and B are respectively 10% and 25% more than than the third number C , what percent is the fist number of second ??

Answers

Answered by Anonymous
187

Answer:

Let the Number C be 100.

\underline{\bigstar\:\textsf{Number A :}}

:\implies\tt A = C \times (100+10)\%\\\\\\:\implies\tt A =100 \times \dfrac{110}{100}\\\\\\:\implies\tt A = 110

\rule{140}{1}

\underline{\bigstar\:\textsf{Number B :}}

:\implies\tt B = C \times (100+25)\%\\\\\\:\implies\tt B =100 \times \dfrac{125}{100}\\\\\\:\implies\tt B = 125

\rule{180}{2}

Let the Percent be x.

\dashrightarrow\tt\:\:A =x\%\:of\:B\\\\\\\dashrightarrow\tt\:\:110 = \dfrac{x}{100} \times 125\\\\\\\dashrightarrow\tt\:\:110 = \dfrac{x}{4} \times5\\\\\\\dashrightarrow\tt\:\:x = \dfrac{110 \times 4}{5}\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt x = 88\%}}}

\therefore\:\underline{\textsf{Required Percentage will be \textbf{88\%}}.}

Answered by Anonymous
27

 \huge{ \purple{ \bigstar{ \mathfrak{answer♡</p><p>}}}}

 \huge{ \red{ \ddot{ \smile}}}

_______________________

=>let the number be x

 \huge\boxed{ \red{ \mathfrak{solution}}}  =  &gt;

For Number A

A=C×(100+10)%

 \large \: A = 100 \times  \frac{110}{100} \\  \\ { \boxed{ \purple{ A = 110}}} \\  \\

for Number B,

B=C×(100+25)%

 \large \: B  = 100 \times  \frac{125}{100}  \\  \\  \boxed{ \green{B = 125}}

let p=percent

A=p%of B

110 =  \frac{p}{100}   \times 125 \\  \\  =  &gt; 110 =  \frac{p}{4}  \times 5 \\  \\  =  &gt; p =  \frac{110 \times 4}{5}  \\  \\  { \huge{ \boxed{ \pink{=  &gt; p = 85 }}}}

____________________

hops this may help you

 \huge{ \red{ \ddot{ \smile}}}

 \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions