If two positive integers m and n , both bigger than 1 satisfy the equation m²+2005²=n²+2004²
Then find the value of m+n-200
Answers
Answered by
2
Answer:
11
Step-by-step explanation:
m²+2005²=n²+2004², m,n > 1
2005² - 2004² = n² - m²
(2004 + 1) ² - 2004² = (n + m) (n - m)
(2004² + 2(2004 x 1) + 1²) - 2004² = (n + m) (n - m)
2(2004) + 1 + 2004² - 2004² = (n + m) (n - m)
4008 + 1 = (n + m) (n – m)
4009 x 1 = (n + m) (n - m)
Now, 4009 has 2 factors, 19, 211
211 x 19 = (n + m) (n - m)
211 is a prime so it can’t be factored farther
m + n = 211
211 – 200 = 11.
Similar questions