Physics, asked by tsakshi636, 2 months ago

If two vectors are Ā= î+ j hat + k hat and B = - î - j hat - k hat , then find the angle between (Ā-B) and Ā.

Answers

Answered by AbhinavRocks10
5

Given:

\sf{\vec{A} = \hat{\imath} + \hat{\jmath}+ \hat{k}}

\sf{\vec{B} = \hat{\imath} - \hat{\jmath} + 2 \hat{k}}  {\mathfrak{\underline{Solution:}}}

Dot product formula:

{\boxed{\sf{\vec{A} \ . \ \vec{B} = AB \ cos \theta}}}

In order to find the angle , we can use the formula for dot product of vectors. Then the angle can be found by solving dot product in component form

➣Using this formula:

➫\sf{cos \theta = \dfrac{\vec{A} \ . \ \vec{B}}{AB}}

➫\sf{cos \theta = \dfrac{\vec{A} \ . \ \vec{B}}{|\vec{A}| \vec{B}|}}

✦Now finding dot product in component form :

\boxed{\sf{\vec{A} \ . \ \vec{B} = A_xB_x + A_yB_y + A_zB_z}}

→\sf{\vec{A} \ . \ \vec{B} = (1)(1) + 1(-1) + 1(2)}

→\sf{\vec{A} \ . \ \vec{B} = 1 - 1 + 2}

→\sf{\vec{A} \ . \ \vec{B} = 2}

✦Now finding magnitude in component form :

\boxed{\sf{|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}}}

For \sf{\vec{A}}

→\sf{|\vec{A}| = \sqrt{1^2 + 1^2 + 1^2}}

→\sf{| \vec{A}| = \sqrt{3}}

For \sf{\vec{B}}

→\sf{|\vec{B}| = \sqrt{1^2 + (-1)^2 + 2^2}}

→\sf{|\vec{B}| = \sqrt{1 + 1 + 4}}

→\sf{|\vec{B}| = \sqrt{6}}

Now putting all these values in the dot product formula:

➫\sf{cos \theta = \dfrac{\vec{A} \ . \ \vec{B}}{|\vec{A}| |\vec{B}|}}

➫\sf{cos \theta = \dfrac{2}{\sqrt3 \times \sqrt{6}}}

\sf{cos \theta = \dfrac{2}{3\sqrt2}}

➫\sf{\theta=cos^{-1}\dfrac{\sqrt2}{3}}

\sf•The \:angle\: is\: \sf{\bf{cos^{-1}\: \dfrac{\sqrt2}{3}}}

_______________________________

Similar questions