Math, asked by avanianu, 1 year ago


If two vertices of an equilateral triangle b
quilateral triangle be (0, 0), (3. 13), find the third vertex.

Answers

Answered by muskansehgal43
1

Step-by-step explanation:

√(3-0)+(13-0)

√3+13

√16

Answered by VineetaGara
1

correct question

If two vertices of an equilateral triangle b

quilateral triangle be (0, 0), (3. \sqrt{3}), find the third vertex.

solution

we know in an equilateral triangle all the sides are equal .

first let us find the length of side bc by distance formula

BC = \sqrt{(3-0)^{2} +(\sqrt{3} -0)^{2} }

   =\sqrt{9+3}

  =2\sqrt{3} units

AB = \sqrt{(x-0)^{2}+ (y-0)^{2} }

      =\sqrt{x^{2} +y^{2} }

\sqrt{x^{2} +y^{2} }=2\sqrt{3}  

x^{2} +y^{2}= 12       ........(1)

AC= \sqrt{(x-3)^{2}+(y-\sqrt{3} )^{2}  }=2\sqrt{3}

    ⇒\sqrt{x^{2}+y^{2}-6x-2\sqrt{3}y+12   }=2\sqrt{3}

    ⇒ 12 -6x-2\sqrt{3}y+12= 12           ......using eqn (1)and squaring both sides

     ⇒6x+2\sqrt{3}y= 12      .......(2)

now finding the equation of line AB by using slope and the point B

y - 0 = tan(60°)(x-0)

⇒y= \sqrt{3}x     putting this is eqn (2) we get ,

       6x +2\sqrt{3}*\sqrt{3}x=12

    ⇒6x+6x=12

         12x=12

            x=1

⇒ y = \sqrt{3}*1

 y=\sqrt{3}

hence the third vertex is (0,\sqrt{3})

Attachments:
Similar questions