Math, asked by poojakoram1112, 1 year ago

If two zeroes of the polynomial x4-6x3-26x2+138x-35 are 2 √3, find the other roots

Answers

Answered by Aurora34
438
________________________________________________________________________________
★ refer to the attachment for your answer
________________________________________________________________________________
Attachments:
Answered by abhi178
6

Therefore the other roots of the polynomial are -5 and 7.

If two zeroes of the polynomial x⁴ - 6x³ - 26x² + 138x - 35 are 2 ± √3,

We have to find the other roots of the given polynomial.

we have to roots of the polynomial are ; 2 + √3 and 2 - √3.

∴ the factors are the polynomial are ; (x - 2 + √3) and (x - 2 - √3)

we get, (x - 2 + √3)(x - 2 - √3) = (x - 2)² - (√3)² = x² - 4x + 1 , is a factor of x⁴ - 6x³ - 26x² + 138x - 35.

Using division method, We can find the other factor of polynomial.

x² - 4x + 1 )x⁴ - 6x³ - 26x² + 138x - 35 (x² - 2x - 35

                 x⁴ - 4x³ + x²

          ----------------------------

                       -2x³  - 27x² + 138x

                       -2x³ + 8x² - 4x

           ---------------------------------------

                             -35x² + 142x - 35

                            - 35x² + 142x - 35

                      ------------------------------------

                                    0

Hence, it is clear that the other factor of polynomial is x² - 2x - 35

∴ x² - 2x - 35 = 0

⇒ x² - 7x + 5x - 35 = 0

⇒ x(x - 7) + 5(x - 7) = 0

⇒ (x - 7) (x + 5) = 0

⇒ x = 7 and - 5

Therefore the other roots of the polynomial are -5 and 7.

Similar questions