Math, asked by Deepsahanu, 1 day ago

If u= (1-2xy+y²)- ½ then prove that x.du/dx-ydu/dy=u³y²

Answers

Answered by nirvairkant2020
0

Answer:

Explanation:

We have:

u

=

(

1

2

x

y

+

y

2

)

1

2

=

1

2

(

1

2

x

y

+

y

2

)

and we seek to validate that

f

satisfies the Partial differential Equation:

x

u

x

y

u

y

=

y

2

u

3

(In other words we are validating that a solution to the given PDE is

u

). We compute the partial derivative (by differentiating wrt to specified variable and treating all other variables as constants), and applying the chain rule:

u

x

=

u

x

=

(

1

)

(

1

2

x

y

+

y

2

)

2

(

2

y

)

2

=

y

(

1

2

x

y

+

y

2

)

2

And

u

y

=

u

y

=

(

1

)

(

1

2

x

y

+

y

2

)

2

(

2

x

+

2

y

)

2

=

x

y

(

1

2

x

y

+

y

2

)

2

Next we compute the LHS of the desired expression:

L

H

S

=

x

u

x

y

u

y

=

x

(

y

(

1

2

x

y

+

y

2

)

2

)

y

(

x

y

(

1

2

x

y

+

y

2

)

2

)

=

x

y

y

x

+

y

2

(

1

2

x

y

+

y

2

)

2

=

y

2

(

1

2

x

y

+

y

2

)

2

Using

u

=

(

1

2

x

y

+

y

2

)

1

2

1

(

1

2

x

y

+

y

2

)

=

2

u

So that

L

H

S

=

(

y

2

)

(

2

u

)

2

=

4

y

2

u

2

R

H

S

Indicating an error in the PDE of the question.

Answered by geethapgouda
0

Answer:

LHS≠RHS

Step-by-step explanation:

We have:

u

=

(

1

2

x

y

+

y

2

)

1

2

=

1

2

(

1

2

x

y

+

y

2

)

and we seek to validate that

f

satisfies the Partial differential Equation:

x

u

x

y

u

y

=

y

2

u

3

u

x

=

u

x

=

(

1

)

(

1

2

x

y

+

y

2

)

2

(

2

y

)

2

=

y

(

1

2

x

y

+

y

2

)

2

And

u

y

=

u

y

=

(

1

)

(

1

2

x

y

+

y

2

)

2

(

2

x

+

2

y

)

2

=

x

y

(

1

2

x

y

+

y

2

)

2

Next we compute the LHS of the desired expression:

L

H

S

=

x

u

x

y

u

y

=

x

(

y

(

1

2

x

y

+

y

2

)

2

)

y

(

x

y

(

1

2

x

y

+

y

2

)

2

)

=

x

y

y

x

+

y

2

(

1

2

x

y

+

y

2

)

2

=

y

2

(

1

2

x

y

+

y

2

)

2

Using

u

=

(

1

2

x

y

+

y

2

)

1

2

1

(

1

2

x

y

+

y

2

)

=

2

u

So that

L

H

S

=

(

y

2

)

(

2

u

)

2

=

4

y

2

u

2

R

H

S

Similar questions