Physics, asked by sanjai15102005, 1 month ago

If U and V depend on x as U = x 2 + 4x and V = x 3 – 12x, then the value of dV/dU is
Options:

Attachments:

Answers

Answered by Sayantana
5

\implies\bf U = x^2 + 4x

\to\rm dU = 2x + 4=2(x+2)

\implies\bf V = x^3 -12x

\to\rm dV = 3x^2- 12 = 3(x^2-4)

\therefore a^2 - b^2 = (a+b)(a-b)

\to\rm dV  = 3(x^2-4) =3(x^2-2^2)

\to\rm dV = 3(x+2)(x-2)

\implies\rm \dfrac{dV}{dU} = \dfrac{3(x+2)(x-2)}{2(x+2)}

\to\rm \dfrac{dV}{dU} = \dfrac{3(x-2)}{2}

\star\bf \dfrac{dV}{dU} = \dfrac{3}{2} \bigg(x-2\bigg)

--------------

Answered by MuskanJoshi14
2

Explanation:

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{VERIFIED✔}}}

\implies\bf U = x^2 + 4x

\to\rm dU = 2x + 4=2(x+2)

\implies\bf V = x^3 -12x

\to\rm dV = 3x^2- 12 = 3(x^2-4)

\therefore a^2 - b^2 = (a+b)(a-b)

\to\rm dV  = 3(x^2-4) =3(x^2-2^2)

\to\rm dV = 3(x+2)(x-2)

\implies\rm \dfrac{dV}{dU} = \dfrac{3(x+2)(x-2)}{2(x+2)}

\to\rm \dfrac{dV}{dU} = \dfrac{3(x-2)}{2}

\star\bf \dfrac{dV}{dU} = \dfrac{3}{2} \bigg(x-2\bigg)

--------------

 \pink{\boxed{I \:Hope\: it's \:Helpful}}

{\sf{\bf{\blue{@Muskanjoshi14࿐}}}}

Similar questions