Math, asked by manasa9614, 10 months ago

if u=log(tanx+tany+tanz) show that sin2x dou u/dou x+ sin2y dou u/ dou y + sin2z dou u/ dou z=2​

Answers

Answered by MaheswariS
8

Answer:

Given:

u=log(tanx+tany+tanz)

Differentiate partially with respect to x

\frac{\partial{u}}{\partial{x}}=\frac{1}{tanx+tany+tanz}\:sec^2x

\implies\:sin2x\frac{\partial{u}}{\partial{x}}=\frac{sin2x}{tanx+tany+tanz}.\frac{1}{cos^2x}

\implies\:sin2x\frac{\partial{u}}{\partial{x}}=\frac{2\:sinx\:cosx}{tanx+tany+tanz}.\frac{1}{cos^2x}

\implies\:sin2x\frac{\partial{u}}{\partial{x}}=\frac{2}{tanx+tany+tanz}.\frac{sinx}{cosx}

\implies\:sin2x\frac{\partial{u}}{\partial{x}}=\frac{2}{tanx+tany+tanz}.tanx

\implies\:sin2x\frac{\partial{u}}{\partial{x}}=\frac{2\:tanx}{tanx+tany+tanz}

similarly

sin2y\frac{\partial{u}}{\partial{y}}=\frac{2\:tany}{tanx+tany+tanz}

sin2y\frac{\partial{u}}{\partial{z}}=\frac{2\:tanz}{tanx+tany+tanz}

Adding these, we get

sin2x\frac{\partial{u}}{\partial{x}}+sin2y\frac{\partial{u}}{\partial{y}}+sin2y\frac{\partial{u}}{\partial{z}}=\frac{2\:tanx}{tanx+tany+tanz}+\frac{2\:tany}{tanx+tany+tanz}+\frac{2\:tanz}{tanx+tany+tanz}

sin2x\frac{\partial{u}}{\partial{x}}+sin2y\frac{\partial{u}}{\partial{y}}+sin2y\frac{\partial{u}}{\partial{z}}=\frac{2\:tanx+2\:tany+2\:tanz}{tanx+tany+tanz}

sin2x\frac{\partial{u}}{\partial{x}}+sin2y\frac{\partial{u}}{\partial{y}}+sin2y\frac{\partial{u}}{\partial{z}}=\frac{2(tanx+tany+tanz)}{tanx+tany+tanz}

\implies\:\boxed{\bf\:sin2x\frac{\partial{u}}{\partial{x}}+sin2y\frac{\partial{u}}{\partial{y}}+sin2y\frac{\partial{u}}{\partial{z}}=2}

Similar questions