Computer Science, asked by archanakhude50, 1 month ago

If u=log(x/y) then the value of a
x du/dx + y du/dy is equal to​

Answers

Answered by brainlyhero98
2

Answer:

x \frac{du}{dx}  + y \frac{du}{dy}  = 2 + \frac{x}{y}  \frac{dy}{dx}  +  \frac{y}{x}   \frac{dx}{dy}

Explanation:

u =  \:log ( \frac{x}{y} ) \\  u= logx - logy \\  \frac{du}{dx}  =  \frac{d}{dx} (logx - logy) \\  =  \frac{d}{dx} (logx) -  \frac{d}{dx} (logy) \\  =  \frac{1}{x}  +  \frac{1}{y}  \frac{dy}{dx}

 \frac{du}{dx}  =  \frac{1}{x}  +  \frac{1}{y}  \frac{dy}{dx}  \\

 \frac{du}{dy}  =  \frac{d}{dy} (logx - logy) \\  =  \frac{d}{dy}(logx) -  \frac{d}{dy} (logy) \\  = \frac{1}{x}   \frac{dx}{dy}  -  \frac{1}{y}

\frac{du}{dy} = \frac{1}{x}   \frac{dx}{dy}  -  \frac{1}{y}

x \frac{du}{dx}  + y \frac{du}{dy}  =  x(\frac{1}{x}  +  \frac{1}{y}  \frac{dy}{dx} ) +  y(\frac{1}{x}  \frac{dx}{dy} +  \frac{1}{y})  \\  = 1 +  \frac{x}{y}  \frac{dy}{dx}  +  \frac{y}{x}   \frac{dx}{dy}  + 1 \\  = 2 + \frac{x}{y}  \frac{dy}{dx}  +  \frac{y}{x}   \frac{dx}{dy}

Answered by srivastavaroshan30
1

Explanation:

I hope you like the answer

Attachments:
Similar questions