If
U = log (x²+ y²+ z²)
prove that x( ∂²u/ ∂y. ∂z)= y( ∂²u/ ∂z. ∂x) = z( ∂²u/ ∂x. ∂y)
Answers
Step-by-step explanation:
(x+y+z) +(x-y-z)
I am right
Answer:
u=log(x²+y²+z²) x( ∂²u/ ∂y. ∂z)= y( ∂²u/ ∂z. ∂x) = z( ∂²u/ ∂x. ∂y) ---(1) ∂u/∂z =∂/∂z log (x²+ y²+ z²) = 1/(x²+ y²+ z²) (0+0+2z) ∂u/∂z = 2z/(x²+ y²+ z²) ( ∂²u/ ∂y. ∂z)=∂/ ∂y 2z/(x²+ y²+ z²) = -2z(0+2y+0)/(x²+ y²+ z²)² ∂²u/ ∂y. ∂z = -4yz/(x²+ y²+ z²)² similarly ∂²u/ ∂z. ∂x = -4xz/(x²+ y²+ z²)² ∂²u/ ∂x. ∂y = -4yx/(x²+ y²+ z²)² add value in eqq.(1) x{-4yz/(x²+ y²+ z²)²} = y{-4zx/(x²+ y²+ z²)²} = z{-4yx/(x²+ y²+ z²)²} ⇒ -4xyz/(x²+ y²+ z²)² = -4xyz/(x²+ y²+ z²)² =-4xyz/(x²+ y²+ z²)² ANS.