Math, asked by akankot1263, 1 year ago

If u=sin^-1(x2+y2/x+y)prove that xdu/dx)+ydu/dy)=tan u

Answers

Answered by MaheswariS
10

Given:

u=sin^{-1}(\frac{x^2+y^2}{x+y})

\implies\;sinu=\frac{x^2+y^2}{x+y}=f(x,y)

f(tx,ty)=\frac{t^2x^2+t^2y^2}{tx+ty}

f(tx,ty)=\frac{t^2(x^2+y^2)}{t(x+y)}

f(tx,ty)=t^1(\frac{x^2+y^2}{x+y})

\therefore\text{f is a homogeneous function of degree 1}

\text{By Euler's theorem}

x\frac{{\partial}f}{{\partial}x}+y\frac{{\partial}f}{{\partial}y}=1.f

x\frac{{\partial}(sinu)}{{\partial}x}+y\frac{{\partial}(sinu)}{{\partial}y}=1.sinu

x\;cosu\;\frac{{\partial}u}{{\partial}x}+y\;cosu\;\frac{{\partial}u}{{\partial}y}=sinu

\text{Divide both sides by cosu}

x\frac{{\partial}u}{{\partial}x}+y\frac{{\partial}u}{{\partial}y}=\frac{sinu}{cosu}

\implies\boxed{\bf\;x\frac{{\partial}u}{{\partial}x}+y\frac{{\partial}u}{{\partial}y}=tanu}

Similar questions