Math, asked by sidhikabegum, 7 months ago

If u=sin^-2 (y/x) then du/dX=​

Answers

Answered by Bhosale2002
1

Answer:

 \frac{du}{dx}  =  - 2 \frac{y}{ {x}^{2} }  \ { \sin}^{ - 3} ( \frac{y}{x} )  \cos( \frac{y}{x} )

Step-by-step explanation:

if \: u =  { \sin }^{ - 2} ( \frac{y}{x} )

 \frac{du}{dx}  =  - 2 { \sin}^{ - 3} ( \frac{y}{x} ) { \cos } ( \frac{y}{x} )\frac{y}{ {x}^{2} }

  \frac{du}{dx} =   - \frac{y}{ {x}^{2} } 2 {\sin }^{ - 3} ( \frac{y}{x}) {\cos}  (\frac{y}{x} )

we can solve another way

for second method,

we know that ,

 { \sin}^{ - 2} ( \frac{y}{x} ) =  {cosec}^{2} ( \frac{y}{x} )

then,

 \frac{du}{dx}  = 2cosec( \frac{y}{x} ) (- cosec( \frac{y }{x} ).cot( \frac{y}{x} ))\frac{y}{ {x}^{2} }

 \frac{du}{dx}  =  -  \frac{ {y} }{ {x}^{2} } 2 {cosec}^{3} ( \frac{y}{x} ) \cos( \frac{y}{x} )

Similar questions