Math, asked by PRIYA20020715, 11 months ago

if u=x2y3, x=log t ,y=et find du/dt​

Answers

Answered by sushiladevi4418
5

Answer:

2\cdot logt\cdot \frac{1}{t}\cdot e^{3t}+3\cdot e^{3t}\cdot log^{2}t

Step-by-step explanation:

As per the question,

We have provided:

u =x^{2}y^{3}

x =logt

y =e^{t}

Now,

Substitue the value of x and y in the equation of u, we get

u =log^{2}t\cdot e^{3t}

Now on differentiating with respect to t by applying the u-v rule:

\frac{d(u\cdot v)}{dx}=u\cdot \frac{dv}{dx}+v\cdot \frac{du}{dx}

Therefore,

u = e^{3t} \cdot log^{2}t

\frac{du}{dt}=2\cdot logt\cdot \frac{1}{t}\cdot e^{3t}+3\cdot e^{3t}\cdot log^{2}t

Hence, \frac{du}{dt}=2\cdot logt\cdot \frac{1}{t}\cdot e^{3t}+3\cdot e^{3t}\cdot log^{2}t

Answered by sonuojha211
9

Answer:

\rm \dfrac{du}{dt}=2e^{3t}\dfrac{\log t}{t}+3e^{3t}\log^2t.

Step-by-step explanation:

Given:

  • \rm u=x^2y^3.
  • \rm x=\log t.
  • \rm y=e^t.

To find:

\rm \dfrac{du}{dt}.

We have,

\rm \dfrac{du}{dt}=\dfrac{d}{dt}\left ( x^2y^3 \right )\\ = y^3\dfrac{d}{dt}\left ( x^2 \right )+x^2\dfrac{d}{dt}\left ( y^3 \right )\\= y^32x\dfrac{dx}{dt}+x^23y^2\dfrac{dy}{dt}\\= 2xy^3\dfrac{dx}{dt}+3x^2y^2\dfrac{dy}{dt}.\ \ \ \ \ \ \ \ ................\ \ eq. (1).

Also,

\rm \dfrac{dx}{dt}=\dfrac{d}{dt}\left (\log t \right )=\dfrac 1t.\\\\ \dfrac{dy}{dt}=\dfrac{d}{dt}\left (e^t \right )=e^t.

Putting the values of all the variables in equation (1), we get,

\rm \dfrac{du}{dt}=2xy^3\cdot \dfrac 1t+3x^2y^2\cdot e^t\\=2\cdot \log t\cdot (e^t)^3\cdot \dfrac 1t+3\cdot (\log t)^2\cdot(e^t)^2\cdot e^t\\=2e^{3t}\dfrac{\log t}{t}+3e^{3t}\log^2t.

Similar questions