Math, asked by sumans3501, 10 months ago

if u=yz/x, v=zx/y, w=xy/z, show that delta(u,v,w)/delta(x,y,z)=4

Answers

Answered by MaheswariS
50

\underline{\textsf{Given:}}

\mathsf{u=\dfrac{yz}{x},\;v=\dfrac{zx}{y},\;w=\dfrac{xy}{z}}

\underline{\textsf{To prove:}}

\mathsf{\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=4}

\underline{\textsf{Solution:}}

\textsf{We know that,}

\mathsf{\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=\left|\begin{array}{ccc}\frac{{\partial}u}{{\partial}x}&\frac{{\partial}u}{{\partial}y}&\frac{{\partial}u}{{\partial}z}\\&&\\\frac{{\partial}v}{{\partial}x}&\frac{{\partial}v}{{\partial}y}&\frac{{\partial}v}{{\partial}z}\\&&\\\frac{{\partial}w}{{\partial}x}&\frac{{\partial}w}{{\partial}y}&\frac{{\partial}w}{{\partial}z}\end{array}\right|}

\mathsf{\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=\left|\begin{array}{ccc}\frac{-yz}{x^2}&\frac{z}{x}&\frac{y}{x}\\&&\\\frac{z}{y}&\frac{-xz}{y^2}&\frac{x}{y}\\&&\\\frac{y}{z}&\frac{x}{z}&\frac{-xy}{z^2}\end{array}\right|}

\textsf{Expanding along first row, we get}

\mathsf{=\dfrac{-yz}{x^2}(\dfrac{x^2yz}{y^2z^2}-\dfrac{x^2}{yz})-\dfrac{z}{x}(\dfrac{-xyz}{yz^2}-\dfrac{xy}{yz})+\dfrac{y}{x}(\dfrac{xz}{yz}+\dfrac{xyz}{y^2z})}

\mathsf{=\dfrac{-yz}{x^2}(\dfrac{x^2}{yz}-\dfrac{x^2}{yz})-\dfrac{z}{x}(\dfrac{-x}{z}-\dfrac{x}{z})+\dfrac{y}{x}(\dfrac{x}{y}+\dfrac{x}{y})}

\mathsf{=\dfrac{-x^2yz}{x^2yz}+\dfrac{x^2yz}{x^2yz}-\dfrac{z}{x}(\dfrac{-2x}{z})+\dfrac{y}{x}(\dfrac{2x}{y})}

\mathsf{=0+2+2}

\mathsf{=4}

\implies\boxed{\mathsf{\bf\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=4}}

Answered by bavani77
0

Step-by-step explanation:

\underline{\textsf{Given:}}

Given:

\mathsf{u=\dfrac{yz}{x},\;v=\dfrac{zx}{y},\;w=\dfrac{xy}{z}}u=

x

yz

,v=

y

zx

,w=

z

xy

\underline{\textsf{To prove:}}

To prove:

\mathsf{\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=4}

δ(x,y,z)

δ(u,v,w)

=4

\underline{\textsf{Solution:}}

Solution:

\textsf{We know that,}We know that,

\begin{gathered}\mathsf{\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=|\begin{array}{ccc}\frac{{\partial}u}{{\partial}x}&\frac{{\partial}u}{{\partial}y}&\frac{{\partial}u}{{\partial}z}\\&&\\\frac{{\partial}v}{{\partial}x}&\frac{{\partial}v}{{\partial}y}&\frac{{\partial}v}{{\partial}z}\\&&\\\frac{{\partial}w}{{\partial}x}&\frac{{\partial}w}{{\partial}y}&\frac{{\partial}w}{{\partial}z}\end{array}|}\end{gathered}

δ(x,y,z)

δ(u,v,w)

=∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

\begin{gathered}\mathsf{\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=|\begin{array}{ccc}\frac{-yz}{x^2}&\frac{z}{x}&\frac{y}{x}\\&&\\\frac{z}{y}&\frac{-xz}{y^2}&\frac{x}{y}\\&&\\\frac{y}{z}&\frac{x}{z}&\frac{-xy}{z^2}\end{array}|}\end{gathered}

δ(x,y,z)

δ(u,v,w)

=∣

x

2

−yz

y

z

z

y

x

z

y

2

−xz

z

x

x

y

y

x

z

2

−xy

\textsf{Expanding along first row, we get}Expanding along first row, we get

\mathsf{=\dfrac{-yz}{x^2}(\dfrac{x^2yz}{y^2z^2}-\dfrac{x^2}{yz})-\dfrac{z}{x}(\dfrac{-xyz}{yz^2}-\dfrac{xy}{yz})+\dfrac{y}{x}(\dfrac{xz}{yz}+\dfrac{xyz}{y^2z})}=

x

2

−yz

(

y

2

z

2

x

2

yz

yz

x

2

)−

x

z

(

yz

2

−xyz

yz

xy

)+

x

y

(

yz

xz

+

y

2

z

xyz

)

\mathsf{=\dfrac{-yz}{x^2}(\dfrac{x^2}{yz}-\dfrac{x^2}{yz})-\dfrac{z}{x}(\dfrac{-x}{z}-\dfrac{x}{z})+\dfrac{y}{x}(\dfrac{x}{y}+\dfrac{x}{y})}=

x

2

−yz

(

yz

x

2

yz

x

2

)−

x

z

(

z

−x

z

x

)+

x

y

(

y

x

+

y

x

)

\mathsf{=\dfrac{-x^2yz}{x^2yz}+\dfrac{x^2yz}{x^2yz}-\dfrac{z}{x}(\dfrac{-2x}{z})+\dfrac{y}{x}(\dfrac{2x}{y})}=

x

2

yz

−x

2

yz

+

x

2

yz

x

2

yz

x

z

(

z

−2x

)+

x

y

(

y

2x

)

\mathsf{=0+2+2}=0+2+2

\mathsf{=4}=4

\implies\boxed{\mathsf{\bf\dfrac{\delta(u,v,w)}{\delta(x,y,z)}=4}}⟹

δ(x,y,z)

δ(u,v,w)

=4

Similar questions