Math, asked by Mrittika050902, 1 year ago

if u²+v² varies as x²+y² and uv varies as xy, then prove that u+v varies as x+y when u/v + v/u = x/y + y/x

Answers

Answered by jahanvi567
1

We recall the concept of proportionality

When quantities have same ratio they are proportional

Given:

u^{2}+v^{2}  = k_{1} [x^{2} +y^{2} ]......................(1)

uv=k_{2}xy

(u+v)^{2}=u^{2}  +v^{2} +2uv

             =k_{1}(x^{2} +y^{2}) +2k_{2} xy...............................(2)

   \frac{u}{v}+\frac{v}{u}=\frac{x}{y} +\frac{y}{x}

   \frac{u^{2}+v^{2}  }{uv} =\frac{x^{2}+y^{2}  }{xy}

\frac{k_{1}(x^{2} +y^{2}) }{k_{2}x y} = \frac{(x^{2} +y^{2}) }{x y}

           k_{1}= k_{2}

Substituting in (2),

(u+v)^{2}=k_{1}(x+y)^{2}

Hence, u+v varies as x+y

Similar questions
Math, 1 year ago