Physics, asked by shreya20022, 10 months ago

if v is the maximum speed of a particle in SHM of amplitude a its average speed in one time period is​

Answers

Answered by nirman95
30

Answer:

Given:

Maximum velocity of particle in SHM of amplitude "a" is "v"

To find:

In one time period, the average velocity of the object.

Concept:

Always remember that Average velocity is the ratio of total distance to the total time taken.

Calculation:

We know that :

v \: max. =( a \times w) =v \\

ω => angular frequency

a => amplitude

Now ,

v \: avg. =  \frac{distance}{time}  \\

 =  > v \: avg. =  \frac{4a}{t}  \\

 =  > v \: avg. =  \frac{4a}{( \frac{2\pi}{w}) }  \\

 =  > v \: avg. =  \frac{4aw}{ 2\pi}  \\

 =  > v \: avg. =  \frac{4}{ 2\pi} \times (aw) \\

 =  > v \: avg. =  \frac{4}{ 2\pi} \times (v ) \\

So, final answer is (4v/2π).

Answered by Anonymous
33

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

We know that :

\Large{\underline{\boxed{\sf{v_{avg} \: = \: \dfrac{Displacement}{time}}}}}

Here Displacement = 4a

Putting values

\rightarrow {\sf{v_{avg} \: = \: \dfrac{4a}{\dfrac{2 \pi}{\omega}} \: \: \: \: \: \big[ \because \:  \omega \: = \: \dfrac{2 \pi}{t} \big]}}

\rightarrow {\sf{v_{avg} \: = \: \dfrac{4 \omega}{2 \pi}}}

\rightarrow {\sf{v_{avg} \: = \: \dfrac{4 (a \: \times \: \omega)}{2 \pi}}}

\rightarrow {\sf{v_{avg} \: = \: \dfrac{4v}{2 \pi} \: \: \: \: \: [\because  \: v_{max} \: = \: a \: \times \: \omega]}}

 \large \implies {\boxed{\sf{v_{avg} \: = \: \dfrac{4v}{2 \pi}}}}

Similar questions