If V is the variance and M is the mean of first 15 natural numbers,then what is V+M×M equals to ?????
Answers
Answered by
1
Answer:
first 15 natural numbers
1,2,3,4,5,6,7,8,9,10,11,12,13,14,151,2,3,4,5,6,7,8,9,10,11,12,13,14,15
N=5N=5
mean,
\mu =\dfrac{1}{N}\sum_{i=1}^{N}x_iμ=
N
1
∑
i=1
N
x
i
\mu =\dfrac{1}{15}(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15)μ=
15
1
(1+2+3+4+5+6+7+8+9+10+11+12+13+14+15)
=\dfrac{120}{5}=8=
5
120
=8
variance,
\sigma ^2=\dfrac{1}{N}\sum_{i=1}^{N}(x_i-\mu )^2σ
2
=
N
1
∑
i=1
N
(x
i
−μ)
2
=\dfrac{1}{15}\sum_{i=1}^{15}(x_i-8 )^2=
15
1
∑
i=1
15
(x
i
−8)
2
=\dfrac{1}{15}(280)=
15
1
(280)
Given,
V+M^2V+M
2
=\dfrac{280}{15}+8^2=
15
280
+8
2
=\dfrac{1240}{15}=
15
1240
=\dfrac{248}{3}=
3
248
Similar questions