Physics, asked by prempandey75, 10 months ago

if vector a is the parallel to vector B what is their vector product​

Answers

Answered by Anonymous
8

Given:

✏ vector A is the parallel to vector B.

To Find:

✏ Cross-product (vector-product) of vector A and vector B.

Formula:

✏ Cross-product of two vectors is given by

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \boxed{ \bold{ \rm{ \pink{ \vec{A} \times  \vec{B} =  | \vec{A}|  | \vec{B}| sin \theta}}}}}

✏ Where, \theta = angle between both vectors.

Calculation:

✏ Here angle between both vectors = 0\degree

 : \implies \rm \:  \vec{A} \times  \vec{B} =  | \vec{A}|  | \vec{B}| sin0 \degree \\  \\   : \implies \rm \:  \underline{ \boxed{ \bold{ \rm{ \orange{ \vec{A} \times  \vec{B} = 0}}}}} \:  \: ( \because \: sin0 \degree = 0)

Answered by amitkumar44481
8

Question :

If the Vector A is parallel to Vector B, the What is their Vector product ?

AnsWer :

0.

Explanation:

• Let two Vector,

 \:  \:  \tt {\vec{A} \:  \: and \:  \:  \vec B \: two \: vector. \: both} \\   \:  \: \tt{ parallel \: to \: each \: other.}

When, Both Vector parallel to each other then the angle between both vector be 0°.

\rule{200}3

Formula Use,

 \tt\:  \:  \:  \:  \vec{A} \times  \vec{B} =  |A|  |B| \sin \theta. \hat{ n}

 \star \tt \:  \: here \:  \hat{n} \: unit \: vector \: which \:  \perp  \\  \:   \:  \: \: \tt{to \:  \vec A \: and \:  \vec  B}

 \tt \:  \:  \star \:  \theta \: show \: angle \: between \:  \vec{A} \: and \:  \vec{B}.

Calculation :

  \tt\vec{A} \times  \vec{B} =  |A|  |B|  \sin \theta. \hat{n} \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \tt= 1. \sin0 \degree. \hat{n}\\</p><p> \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:\tt = 0.

Some Examples,

We have,

 \tt \hat{i} \times  \hat{j} = |\hat{i}  | |\hat{j} |  \sin 90 \degree \hat{n} \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \: = 1 \times 1 \times  \hat{n} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \hat{k}.

 \tt \hat{j} \times  \hat{k} = |\hat{j}  | |\hat{k} |  \sin 90 \degree \hat{n} \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \: = 1 \times 1 \times  \hat{n} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \hat{i}.

 \tt \hat{k} \times  \hat{i} = |\hat{k}  | |\hat{i} |  \sin 90 \degree \hat{n} \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \: = 1 \times 1 \times  \hat{n} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \hat{j}.

 \tt \hat{j} \times  \hat{i} = |\hat{j}  | |\hat{i} |  \sin 90 \degree \hat{n} \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \: = -1 \times 1 \times  \hat{n} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = - \hat{k}.

 \tt \hat{k} \times  \hat{j} = |\hat{k}  | |\hat{j} |  \sin 90 \degree \hat{n} \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \: =- 1 \times 1 \times  \hat{n} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = - \hat{i}.

 \tt \hat{i} \times  \hat{k} = |\hat{i}  | |\hat{k} |  \sin 90 \degree \hat{n} \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \: = -1 \times 1 \times  \hat{n} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = - \hat{j}.

 \tt\star \:\sin0 \degree=0.\\</p><p></p><p>\tt\star\:\sin90\degree=1.

Similar questions