Physics, asked by HusenHanumant, 1 year ago

If vector v1 = 3i cap+4j cap+k cap and v2= i cap -j cap- k cap determine the magnitude of vector v1+vector v2​

Answers

Answered by MaheswariS
11

Answer:

\text{The magnitude of }\vec{v_1}+\vec{v_2}\text{is}

|\vec{v_1}+\vec{v_2}|=5

Explanation:

Given:

\vec{v_1}=3\:\hat{i}+4\:\hat{j}+\hat{k}

\vec{v_2}=\hat{i}-\hat{j}-\hat{k}

\implies\:\vec{v_1}+\vec{v_2}=4\:\hat{i}+3\:\hat{j}+0\hat{k}

\text{The magnitude of }\vec{v_1}+\vec{v_2}\:\text{is}

|\vec{v_1}+\vec{v_2}|=\sqrt{4^2+3^2+0^2}

\implies\:|\vec{v_1}+\vec{v_2}|=\sqrt{16+9}

\implies\:|\vec{v_1}+\vec{v_2}|=\sqrt{25}

\implies\:\boxed{|\vec{v_1}+\vec{v_2}|=5}

Answered by dhanushree7552
0

Answer:

Answer:

\text{The magnitude of }\vec{v_1}+\vec{v_2}\text{is}The magnitude of v1+v2is

|\vec{v_1}+\vec{v_2}|=5∣v1+v2∣=5

Explanation:

Given:

\vec{v_1}=3\:\hat{i}+4\:\hat{j}+\hat{k}v1=3i^+4j^+k^

\vec{v_2}=\hat{i}-\hat{j}-\hat{k}v2=i^−j^−k^

\implies\:\vec{v_1}+\vec{v_2}=4\:\hat{i}+3\:\hat{j}+0\hat{k}⟹v1+v2=4i^+3j^+0k^

\text{The magnitude of }\vec{v_1}+\vec{v_2}\:\text{is}The magnitude of v1+v2is

|\vec{v_1}+\vec{v_2}|=\sqrt{4^2+3^2+0^2}∣v1+v2∣=42+32+02

\implies\:|\vec{v_1}+\vec{v_2}|=\sqrt{16+9}⟹∣v1+v2∣=16+9

\implies\:|\vec{v_1}+\vec{v_2}|=\sqrt{25}⟹∣v1+v2∣=25

\implies\:\boxed{|\vec{v_1}+\vec{v_2}|=5}⟹∣v1+v2∣=5

Similar questions