Math, asked by jjaswanth2004, 11 months ago

if vertices of triangle are (0,3),(5,6),(-5,2) then find centroid of triangle​

Answers

Answered by rajirithik
0

Answer:centroid formula = x1 + x2 + x3/3, y1 + y2 + y3/3

X1, X2, X3=0, 5,-5

Y1, Y2, Y3=3,6, 2

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(0,\frac{11}{3})}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (0,3)} \\ \\ : \implies \text{Coordinate \: of \: B = (5,6)} \\ \\ : \implies \text{Coordinate \: of \: C = (-5,2)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{0+5 +(-5)}{3} \\ \\ : \implies x = \frac{0}{3} \\ \\ \green{: \implies x =0} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{ 3 +6+2}{3} \\ \\ : \implies y = \frac{11}{3} \\ \\ \green{: \implies y =\frac{11}{3}} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(0,\frac{11}{3})}

Similar questions