Math, asked by zen42, 1 month ago

If w is a cube root of unity, then the value of (w+1)/w is *

a) 1

b) -1

c) w

d) -w​

Answers

Answered by mathdude500
7

Basic Concept :-

Let we first derive the cube roots of unity.

\rm :\longmapsto\:Let \: x =  {(1)}^{ \frac{1}{3} }

On cubing both sides, we get

\rm :\longmapsto\: {x}^{3}  = 1

\rm :\longmapsto\: {x}^{3} - 1 = 0

\rm :\longmapsto\: (x - 1)( {x}^{2} + x + 1)  = 0

\bf\implies \:x = 1

Or

\rm :\longmapsto\: {x}^{2} + x + 1 = 0

We know,

Quadratic formula,

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac} }{2a}

So,

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1} - 4} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{3} i}{2}

\bf\implies \:x = \dfrac{ - 1 +  \sqrt{3}i }{2}  \:  \: or \:  \: \dfrac{ - 1 -  \sqrt{3} i}{2}

Hence,

Cube roots of unity are,

\bf\implies \:1, \dfrac{ - 1 +  \sqrt{3}i }{2}  \:  \: and \:  \: \dfrac{ - 1 -  \sqrt{3} i}{2}

in symbolic form represented as

\rm :\longmapsto\:1, \:  \omega, \:  { \omega}^{2}

Having properties,

\rm :\longmapsto\:1 + \omega +  {\omega}^{2}  = 0

\rm :\longmapsto\:\omega = \dfrac{1}{ {\omega}^{2} }

\rm :\longmapsto\: {\omega}^{2} = \dfrac{1}{ {\omega} }

\rm :\longmapsto\: {\omega}^{3} = 1

Let's solve the problem now!!!

\rm :\longmapsto\:\dfrac{\omega + 1}{\omega}

 \rm \:  =  \: \dfrac{\omega}{\omega}   + \dfrac{1}{\omega}

 \rm \:  =  \: 1 +  {\omega}^{2}

 \rm \:  =  \:  - \omega

\bf :\implies\:\red{\boxed{\dfrac{ \bf \: \omega + 1}{\omega}  =  - \omega}}

Hence, option (d) is correct.

Similar questions