If w is the complex cube root of unity, find the value of
i) (1 - w - w²)³ + (1 - w + w²)³
ii) (1 + w)(1 + w²)(1 + w⁴)(1 + w⁸)
Answers
Answered by
26
Answer:
i)-16
ii) 1
Step-by-step explanation:
Concept:
If ω is a cube root of unity
then
1+ω+ω²=0
and
ω³ = 1
i)i) (1 +ω- ω²)³ + (1 - ω + ω²)³
=(- ω² - ω²)³ + ( - ω - ω)³
=(- 2ω²)³ + ( - 2ω )³
=(- 8(ω³)²) + ( - 8 ω³)
=(- 8(1)²) + ( - 8 (1))
= - 8 - 8
= -16
ii) (1 + ω)(1 + ω²)(1 + ω⁴)(1 + ω⁸)
=(1 + ω)(1 + ω²)(1 + ω³.ω)(1 + ω³.ω³.ω²)
=(1 + ω)(1 + ω²)(1 + ω)(1 + ω²)
=[(1 + ω)(1 + ω²)]²
=[1 + ω² + ω +ω³]²
=[1 + (ω² + ω) +1]²
=[1 + (-1) +1]²
=[1]²
=1
Similar questions