If x = a + b, y = αa + βb and z=aβ + bα where α and β are complex cube-roots of unity, show that xyz = a³ + b³.
Answers
Answered by
16
Answer:
if x=a+b,y=aω+bω2,z=aω2+bω
then x3+b3+z3=3(a3+b3)
where we know
1+ω+ω2=0
a3+b3=3(a+b)(a2−ab+b2)
if a+b+c=0 then a3+b3+c3=3abc
now,
x+y+z=a+b+(aω+bω2)+aω2+bω
⇒x+y+z=(a+b)(1+ω+ω2)=0
and we know if x+y+z=0, then x3+y3+z3=3xyz
⇒x3+y3+z3=3(a+b)(aω+bω2)(aω2+bω)
⇒x3+y3+z3=3ω2(a+b)(a+bω)(aω+b)
⇒x3+y3+z3=3ω2(a+b)(a2ω+ab(1+ω2)+b2ω)
⇒x3+y3+z3=3ω2(a+b)(a2ω−abω+b2)
⇒x3+y3+z3=3ω3(a+b)(a2−ab+b2)
⇒x3+y3+z3=3(a3+b3)
Answered by
5
Answer:the best and easiest way
Step-by-step explanation:
Mark brainlist if worth it
Attachments:
Similar questions