Math, asked by meh62, 10 months ago

if w is the complex cube root of unity then find the value of (1-w-w^2)^3 + (1-w+w^2)^3​

Answers

Answered by waqarsd
7

Answer:

0

Step-by-step explanation:

If w is the cube root of unity then

w^3 = 1  and 1 + w + w^2 =0

(1-w-w^2)^3+(1-w+w^2)^3\\=(1-(w+w^2))^3+((1+w^2)-w)^3\\=(1-(-1))^3+(-w-w)^3\\=2^3+(-2)^3w^3\\=8-8\\=0

Hope it Helps

Answered by Swarup1998
2

(1-\omega-\omega^{2})^{3}+(1-\omega+\omega^{2})^{3}=0

Step-by-step explanation:

Since \omega is the complex cube root of unity, then we have two relations:

  • \omega^{3}=1 ... (1)

  • 1+\omega+\omega^{2}=0 ... (2)

So, 1-\omega-\omega^{2}

=1-(\omega+\omega^{2})

=1-(-1) [by (2)]

=1+1

=2

\Rightarrow \boxed{1-\omega-\omega^{2}=2} ... (3)

and 1-\omega+\omega^{2}

=(1+\omega^{2})-\omega

=(-\omega)-\omega [by (2)]

=-\omega-\omega

=-2\omega

\Rightarrow \boxed{1-\omega+\omega^{2}=-2\omega} ... (4)

Now, (1-\omega-\omega^{2})^{3}+(1-\omega+\omega^{2})^{3}

=(2)^{3}+(-2\omega)^{3} [using the above relations in (3) and (4)]

=8-8\omega^{3}

=8-8(1)\quad[\because\omega^{3}=1]

=8-8

=\bold{0}

Similar questions