Hindi, asked by nikhileshpani, 6 months ago

if w=xy+yz+z find directional derivative of w at (1,-2,0)in the directions at (3,6,9)​

Answers

Answered by yourbunty0
3

Explanation:

The answer is -0.8.Go n crack the mcq

Answered by pulakmath007
28

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{ \:w = xy + yz + z  \: }

TO DETERMINE

The directional derivative of w at (1,-2,0) in the directions at (3,6,9)

CALCULATION

Here

 \sf{ \:w = f(x,y,z) = xy + yz + z  \: }

Now

 \displaystyle \sf{ \:  \frac{ \partial w}{ \partial x}  = y \: }

 \displaystyle \sf{ \:  \frac{ \partial w}{ \partial y}   = x + z\: }

 \displaystyle \sf{ \:  \frac{ \partial w}{ \partial z}   = y + 1\: }

 \sf{Again \:  the \:  unit  \: vector  \: in  \: the \:  direction \:  \vec{r}  = 3 \hat{i} + 6 \hat{j} + 9 \hat{k} \:   is}

  \displaystyle \:  \sf{   \frac{ \vec{r} }{ | \vec{r}| } =\:  \frac{1}{ \sqrt{126} } ( \:  3\hat{i} +  6\hat{j} + 9\hat{k}\: )\: }

Again

 \sf{ \nabla{w}  = y \hat{i} + (x + z) \hat{j} + (y + 1) \hat{k}\: }

So at ( 1,-2,0)

 \sf{ \nabla{w}  =  - 2\hat{i} + (1 + 0) \hat{j} + ( - 2+ 1) \hat{k}\: }

 \implies \:  \sf{ \nabla{w}  =  - 2\hat{i} +  \hat{j}  - \hat{k}\: }

Hence the required answer is

  =  \sf{( - 2\hat{i} +  \hat{j}  - \hat{k}\: )}. \:   \displaystyle \:  \sf{   \:  \frac{1}{ \sqrt{126} } ( \:  3\hat{i} +  6\hat{j} + 9\hat{k}\: )\: }

 =  \displaystyle\sf{ \:  \frac{ - 6 + 6 - 9}{ \sqrt{126} } }

 =  \displaystyle\sf{ \:  \frac{  - 9}{ \sqrt{126} } }

Similar questions