Math, asked by farooq96, 8 months ago

If we add 1 to numerator and subtract 1 from the denominator a fraction reduces to 1. It become 1/2 if we only add 1 to the denominator. what is fraction?​

Answers

Answered by CrEEpycAmp
119

\huge\mathcal\color{red} AnSwEr::

\: \rightarrow\: \bold{Let \: the \: numerator \: of \: a \: fraction \: be \: x.} \:

 \:\rightarrow\: \bold{And\: the\: denominator\: of\: a\: fraction\: be \: y.} \:

 \implies  \Large  \bold{Original \: fraction} =       \bold{ \frac{x}{y} }

 \rightarrow  \:   \Large\mathtt{ \frac{x + 1}{y - 1} } = 1

 \rightarrow \:  \large\mathtt{x + 1 = y - 1}  \\  \:  \:  \:  \:  \: \:  \mathtt{x - y =  - 2 \: \:  \: eq(1)}

 \rightarrow \:  \Large \mathtt{ \frac{x}{y + 1} =  \frac{1}{2}}

 \rightarrow \:  \mathtt{2x = y + 1} \\  \:  \:  \:  \:  \:  \:  \mathtt{2x - y = 1 \:  \: eq(2)}

 \rightarrow \:  \mathtt{x - y =  - 2} \\  \:  \:  \:  \:  \:  \:  \mathtt{2x - y = 1}

 \: \large\bold{Now \: change\:  the\: sign \: of \: 2x-y= 1} \:

 \rightarrow \: \mathtt{x - y =  - 2} \\  \:  \:  \:   \mathtt{  \frac{ - 2x + y = - 1}{ \cancel {- }x =  \cancel{ - }3} } \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \large\fbox\mathtt{ x = 3}

 \: \bold{Put\: x=3\: in\: eq. (1)} \:

  \rightarrow \:  \mathtt{x - y =  - 2} \\  \:  \:   =  \mathtt{3 - y =  - 2} \\  \:  \:   \mathtt{ - y =  - 2 - 3} \\  \:  \:   \:   \mathtt{  \cancel{ - }y =    \cancel{ - }5} \\  \:  \:   \:  \:  \:  \:  \fbox  \mathtt {y = 5}

   \: \Large\fbox\mathtt{Fraction =  \frac{x}{y} =  \fbox{ \frac{3}{5} }}

{\huge{\purple{\mathtt{BeBrainly...!}}}}

Similar questions