Math, asked by ojaswipanpaliya, 3 months ago

If x= 1/1+√2 then value of x² + 2x + 3 is​

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = \dfrac{1}{ \sqrt{2} + 1 }

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:The \: value \: of \:  {x}^{2} + 2x + 3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = \dfrac{1}{ \sqrt{2} + 1 }

☆ On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{1}{ \sqrt{2} + 1 }  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }

 \rm :\longmapsto\:x = \: \dfrac{ \sqrt{2} - 1 }{ {( \sqrt{2} )}^{2}  -  {(1)}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm :\longmapsto\:x = \dfrac{ \sqrt{2} - 1 }{2 - 1}

\rm :\implies\:x =  \sqrt{2} - 1

☆ can be rewritten as

\rm :\implies\:x  + 1=  \sqrt{2}

☆ On squaring both sides, we get

\rm :\longmapsto\: {(x + 1)}^{2} =  {( \sqrt{2})}^{2}

\rm :\longmapsto\: {x}^{2} + 1 + 2x = 2

☆ Adding 2 on both sides, we get

\rm :\longmapsto\: {x}^{2} + 1 + 2x + 2 = 2 + 2

\rm :\longmapsto\: {x}^{2}  + 2x + 3 =4

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \underbrace{ \large{ \boxed{ \sf \:  {x}^{2} + 2x + 3 = 4}}}}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Answered by patelmona241284
2

Hey mate your answer is spotted in the upper image ⬆️⬆️⬆️⬆️⬆️

Hope that my answer satisfied you

and helps you

THNXS

Attachments:
Similar questions