Math, asked by anubhav2705, 1 month ago

If x=1/2-√3,find the value of x^3-2x^2-7x+5​

Answers

Answered by Dinosaurs1842
8

Given :

 \longrightarrow \sf x =  \dfrac{1}{2 -  \sqrt{3} }

To find :

 \sf {x}^{3}  - 2 {x}^{2}  - 7x + 5

Answer :

 \sf x=  \dfrac{1}{2 -  \sqrt{3} }

Rationalising the denominator :

Rationalising factor = 2 + 3

  \implies \sf  \dfrac{1}{2 -  \sqrt{3} }  \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \implies \sf  \dfrac{1(2 +  \sqrt{3}) }{(2 -  \sqrt{3})(2 +  \sqrt{3} ) }

The identity (a-b)(a+b) = a² - b² is formed in the denominator.

 \implies \sf  \dfrac{2 +  \sqrt{3} }{ {2}^{2} -  { (\sqrt{3}) }^{2}   }

 \implies \sf  \dfrac{2 +  \sqrt{3} }{4 - 3}

 \implies \sf \dfrac{2 +  \sqrt{3} }{1}

 \implies \sf x = 2 +  \sqrt{3}

x³ :

Applying (a+b)³ = a³ + 3ab(a+b) + b³ identity,

  \implies \sf (2 +  \sqrt{3})^{3}

 \implies \sf  {2}^{3} + 3(2)( \sqrt{3})(2 +  \sqrt{3} ) + ( \sqrt{3})^{3}

 \implies \sf 8 + 6 \sqrt{3} (2 +  \sqrt{3} ) + 3 \sqrt{3}

 \implies \sf 8 + 12 \sqrt{3}  + 18 + 3 \sqrt{3}

 \implies \sf 26 + 15 \sqrt{3}

2x² :

Applying (a+b)² = a² + 2ab + b² identity,

 \implies \sf 2(2 +  \sqrt{3} )^{2}

 \implies \sf 2\{ {2}^{2}  + 2(2)( \sqrt{3} ) + ( \sqrt{3} )^{2}  \}

 \implies \sf 2\{4 + 4\sqrt{3}  + 3 \}

 \implies \sf 2 \{7 + 4 \sqrt{3}  \}

 \implies \sf 14 + 8 \sqrt{3}

7x :

 \implies \sf 7(2 +  \sqrt{3} )

  \implies \sf 14 + 7 \sqrt{3}

x³ - 2x² - 7x + 5

Substituting all the values,

 \implies \sf (26 + 15 \sqrt{3} ) - (14 + 8 \sqrt{3} ) - (14 + 7 \sqrt{3} ) + 5

 \implies \sf 26 + 15 \sqrt{3}  - 14 - 8 \sqrt{3}  - 14 - 7 \sqrt{3}  + 5

 \implies \sf (26 - 14 - 14 + 5) + (15 \sqrt{3}   - 8 \sqrt{3}  - 7 \sqrt{3} )

 \implies \sf (3) + (0)

 =  \sf 3

Therefore, x³ - 2x² - 7x + 5 = 3

Answered by muskanshi536
7

Step-by-step explanation:

Given :

 \longrightarrow \sf x =  \dfrac{1}{2 -  \sqrt{3} }

To find :

 \sf {x}^{3}  - 2 {x}^{2}  - 7x + 5

Answer :

 \sf x=  \dfrac{1}{2 -  \sqrt{3} }

Rationalising the denominator :

Rationalising factor = 2 + √3

  \implies \sf  \dfrac{1}{2 -  \sqrt{3} }  \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

 \implies \sf  \dfrac{1(2 +  \sqrt{3}) }{(2 -  \sqrt{3})(2 +  \sqrt{3} ) }

The identity (a-b)(a+b) = a² - b² is formed in the denominator.

 \implies \sf  \dfrac{2 +  \sqrt{3} }{ {2}^{2} -  { (\sqrt{3}) }^{2}   }

 \implies \sf  \dfrac{2 +  \sqrt{3} }{4 - 3}

 \implies \sf \dfrac{2 +  \sqrt{3} }{1}

 \implies \sf x = 2 +  \sqrt{3}

x³ :

Applying (a+b)³ = a³ + 3ab(a+b) + b³ identity,

  \implies \sf (2 +  \sqrt{3})^{3}

 \implies \sf  {2}^{3} + 3(2)( \sqrt{3})(2 +  \sqrt{3} ) + ( \sqrt{3})^{3}

 \implies \sf 8 + 6 \sqrt{3} (2 +  \sqrt{3} ) + 3 \sqrt{3}

 \implies \sf 8 + 12 \sqrt{3}  + 18 + 3 \sqrt{3}

 \implies \sf 26 + 15 \sqrt{3}

2x² :

Applying (a+b)² = a² + 2ab + b² identity,

 \implies \sf 2(2 +  \sqrt{3} )^{2}

 \implies \sf 2\{ {2}^{2}  + 2(2)( \sqrt{3} ) + ( \sqrt{3} )^{2}  \}

 \implies \sf 2\{4 + 4\sqrt{3}  + 3 \}

 \implies \sf 2 \{7 + 4 \sqrt{3}  \}

 \implies \sf 14 + 8 \sqrt{3}

7x :

 \implies \sf 7(2 +  \sqrt{3} )

  \implies \sf 14 + 7 \sqrt{3}

x³ - 2x² - 7x + 5

Substituting all the values,

 \implies \sf (26 + 15 \sqrt{3} ) - (14 + 8 \sqrt{3} ) - (14 + 7 \sqrt{3} ) + 5

 \implies \sf 26 + 15 \sqrt{3}  - 14 - 8 \sqrt{3}  - 14 - 7 \sqrt{3}  + 5

 \implies \sf (26 - 14 - 14 + 5) + (15 \sqrt{3}   - 8 \sqrt{3}  - 7 \sqrt{3} )

 \implies \sf (3) + (0)

 =  \sf 3

Therefore, x³ - 2x² - 7x + 5 = 3

Similar questions