Math, asked by binaroy032, 11 months ago

If √x =1+√2,find the value of x+1/x​

Answers

Answered by Jayasurya2O
2

Hey friends here is your answer :-

The value of the expression is 8√2+8

The value of x is given to be : x = √2 + 1

The value of the required expression can be found easily by substituting the value of x = √2 + 1 in the expression

So, The value is :

(√2+1)^2+1/√2+1

2+1+4+1/√2+1

8/√2+1 ×√2-1/√2-1

8√2+8/2-1

8√2+8

HOPE IT HELPED YOU.........

Answered by pansumantarkm
0

Answer:

Required value = 6

Step-by-step explanation:

Given that,

√x = 1 +√2

\frac{1}{\sqrt{x}}=\frac{1}{1+\sqrt{2}}

          = \frac{\sqrt{2}-{1}}{(\sqrt{2}+{1})(\sqrt{2}-{1})}

          =\frac{\sqrt{2}-{1}}{2-1}        [∵(a + b)(a - b) = a² - b²]

          = \sqrt{2}-{1}

\sqrt{x}+\frac{1}{\sqrt{x}} = \sqrt{2}+{1}+\sqrt{2}-{1}

            = √2 + √2

            = 2√2

Now,

x+\frac{1}{x} = (\sqrt{x})^{2}+(\frac{1}{\sqrt{x}})^{2}

            = (\sqrt{x}+\frac{1}{\sqrt{x}})^{2}-2.\sqrt{x}.\frac{1}{\sqrt{x} }                 [∵ a² + b² = (a + b)² - 2.a.b]

            =  (2√2)² - 2

            = 8 - 2

            = 6

∴Required value = 6

________________________________________________

                                      // Hope this will help you //

                                     // Please Mark as Brainliest //

Similar questions