if x = 1 + √2 find the value of (x-1÷x)
Answers
Answered by
1
Answer:
Answer:
\left(x-\frac{1}{x}\right)^{3}=8
Step-by-step explanation:
Given \: x = 1-\sqrt{2}\:---(1)
\frac{1}{x}=\frac{1}{1-\sqrt{2}}\\=\frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})}
=\frac{1+\sqrt{2}}{1^{2}-(\sqrt{2})^{2}}\\=\frac{1+\sqrt{2}}{1-2}\\=-(1+\sqrt{2})\:--(2)
Now,\\\left(x-\frac{1}{x}\right)^{3}\\=\left(1-\sqrt{2}-[-(1+\sqrt{2})]\right)^{3}\\=\left(1-\sqrt{2}+1+\sqrt{2}\right)^{3}\\=2^{3}\\=8
Therefore,
\left(x-\frac{1}{x}\right)^{3}=8
•••♪
Similar questions