if x=1-√2 find the value of (x-1/x)cube
Answers
Answered by
1
x=1-√21+√2
1/x= 1/(1-√2)
= (1+√2)/(1-√2)(1+√2)
=(1+√2)/(1^2-√2^2)
=(1+√2)/(1 -2)
=(1+√2)/-1
=-(1+√2)
therefore x-1/x= (1-√2)-{-(1+√2)}
=1-√2+1+√2
=2
therefore x-1/x= 2^3= 8
ans give me brainlist
1/x= 1/(1-√2)
= (1+√2)/(1-√2)(1+√2)
=(1+√2)/(1^2-√2^2)
=(1+√2)/(1 -2)
=(1+√2)/-1
=-(1+√2)
therefore x-1/x= (1-√2)-{-(1+√2)}
=1-√2+1+√2
=2
therefore x-1/x= 2^3= 8
ans give me brainlist
Answered by
2
if x = 1 - √2 , then ( x - 1 / x )^3 = ?
_______________________________
step 1 Find 1 / x :
_______________________________
1 / x = 1 /( 1 - √2 )
by rationalizing denominator , we get
= 1 / ( 1 - √2 ) × (1 + √2 ) /( 1 + √2 )
=( 1 + √2 ) / 1 - 2 = - ( 1 + √2 )
so now ,
x - 1 / x = ( 1 - √2 ) - { - ( 1 + √2 ) }
x - 1 / x = 1 - √2 - ( -1 - √2 )
x - 1 / x = 1 - √2 + 1 + √2
x - 1 / x = 2 _______________________________
by taking cube both side , we get
( x - 1 /x )^3 = ( 2 )^3
( x - 1 / x )^3 = 8
_______________________________
Your Answer = 8
_______________________________
_______________________________
step 1 Find 1 / x :
_______________________________
1 / x = 1 /( 1 - √2 )
by rationalizing denominator , we get
= 1 / ( 1 - √2 ) × (1 + √2 ) /( 1 + √2 )
=( 1 + √2 ) / 1 - 2 = - ( 1 + √2 )
so now ,
x - 1 / x = ( 1 - √2 ) - { - ( 1 + √2 ) }
x - 1 / x = 1 - √2 - ( -1 - √2 )
x - 1 / x = 1 - √2 + 1 + √2
x - 1 / x = 2 _______________________________
by taking cube both side , we get
( x - 1 /x )^3 = ( 2 )^3
( x - 1 / x )^3 = 8
_______________________________
Your Answer = 8
_______________________________
Similar questions